SCIENCE EN HERBE

MATHS PREMIERE S2 & S4 & S5

SERIE N°2-1: GENERALITE SUR LES FONCTIONS ET APPLICATIONS

Exercice 1:

On pose
$$f_m(x) = \frac{x^2 + x + 3}{(m-2)x^2 - (m-2)x + m + 1}$$
; m étant un paramètre $g(x) = \frac{\sqrt{x^2 + x + 2}}{x + 2 - \sqrt{x^2 - 3x + 2}}$; $h(x) = \sqrt{x - 2 - \sqrt{x^2 + 2x + 5}}$

Déterminer le domaine de définition des fonctions f_m , g et h.

Exercice 2:

1) Déterminer le domaine de définition des fonctions de R dans R suivante :

$$f(x) = \sqrt{x|x| - 2} \; ; \quad g(x) = \sqrt{x^2 - x - 6} - \sqrt{-x + 4} \; ; \quad h(x) = \frac{x^2 - 4}{\sqrt{x^2 + x + 1 - x + 2}}$$

$$L(x): \begin{cases} \sqrt{\left|\frac{x - 1}{x + 2}\right|}, \; si \; x \le 0 \\ \frac{\sqrt{1 + 2x}}{x - 1}, \; si \; x > 0 \end{cases} ; \quad U(x): \begin{cases} \sqrt{x^2 - 4x + 3}, \; si \; x \le 0 \\ \frac{\sqrt{x^2 - 4x + 3}}{x - 4}, \; si \; x > 0 \end{cases}$$

2) Déterminer le domaine de définition de fog avec

$$f: \left[-\frac{1}{2}; +\infty\right[\to R \qquad ; \qquad g: R \to R \\ x \mapsto \sqrt{|x| - 1} \qquad \qquad x \mapsto \frac{x+1}{|x+2|-1}$$

Exercice 3:

On considère les applications suivantes :

$$f: R - \{2\} \longrightarrow R - \{3\} \qquad ; \qquad g:]-1; +\infty[\longrightarrow]2; +\infty[$$

$$x \mapsto \frac{3x+1}{x-2} \qquad \qquad x \mapsto x^2 + 2x + 3$$

- 1) Montrer que f est injective.
- 2) Montrer que f est surjective, en déduire que f est une bijection.
- 3) Déterminer les antécédents de 0 et 6 par g.
- 4) Montrer que g est une bijection et déterminer sa bijection réciproque.
- 5) Retrouver les résultats de la question 3) en utilisant g^{-1} . Tapez une équation ici.

Exercice 4 :

Soient les fonctions f, g et h définies par :

$$f(x) = 2x^2 - 5x + 3$$
 ; $g(x) = \frac{2x - 3}{x - 3}$; $h(x) = \frac{x(x + 3)}{x - 1}$
1) Montrer que (D) : $x = \frac{5}{4}$ est un axe de symétrie de (Cf) .

- 2) a) Montrer que I(3;2) est un centre de symétrie de (Cg).
 - b) Montrer que K(1;5) est un centre de symétrie de (Ch).
- 3) Ecrire h(x) sous la forme $h(x) = ax + b + \frac{c}{x+3}$, $a, b, c \in R$.

Exercice 5:

- 1) Soit f la fonction définie sur R par $(x) = 1 \frac{x^2}{|x|}$
 - a) Déterminer Df et les restrictions f_1 , f_2 et f_3 de f à R_+^* , R_-^* et [-1,0[U]0,1].
 - b) Etudier la parité de f.
- 2) Soient f et g deux fonction définie sur R par $(x) = \frac{1}{2}x 3$ et $g(x) = \frac{2x+3}{3x-1}$.
 - a) Déterminer *gof* après avoir précisé *Dgof*.
 - b) Déterminer toutes les applications affines h telles que hof(x) = foh(x).