SERIE N°2-2: SUITES NUMERIQUES

Exercice 1:

On considère les 2 suites (U_n) et (V_n) definie pour tout entier naturel n par : $\begin{cases} U_0 = 3 \\ U_{n+1} = \frac{U_n + V_n}{2} \end{cases}$ et

$$\begin{cases} V_0 = 3 \\ V_{n+1} = \frac{U_{n+1} + V_n}{2} \end{cases}$$

- 1) Calculer U_1 , V_1 , U_2 , V_2 .
- 2) Soit la suite (W_n) définie , pour tout entier naturel n , par $W_n = V_n U_n$. Montrer que W est une suite géométrique dont on déterminera le premier terme et la raison.
- 3) Etudier le sens de variation des suites (U_n) et (V_n) .
- 4) Montrer que (U_n) est majorée par 4 et (V_n) est minorée par 3.
- 5) On considère a présent la suite (t_n) définie , pour tout entier naturel n , par $t_n = \frac{U_n + 2V_n}{3}$ Démonter que la suite (t_n) est croissante.
- 6) En déduire U_n et V_n en fonction de n.
- 7) Calculer alors la limite des suites (U_n) et (V_n)

Exercice 2:

Soit U et V 2 suites numériques définies par

$$U_0=0$$
 et $\forall n\in\mathbb{N}$, $U_{n+1}=\frac{1+U_n}{2}$

$$V_0=2\ et\ \forall n\in\mathbb{N}$$
 , $V_{n+1}=rac{1+V_n}{2}$

- 1) Calculer U_1 , U_2 , V_1 , V_2 , V_3 .
- 2) On définit 2 nouvelles suites s et d par $s_n = U_n + V_n$ et $d_n = V_n U_n$
 - a) Vérifier que la suite s est constante. Que vaut s_n
 - b) Vérifier que la suite d est géométrique Exprimer d_n en fonction de n.
 - c) En déduire de a) et b) les expressions de U_n et V_n en fonction de n. Les suites U et V convergentent-elles.

Exercice 3:

Soit (U_n) et $(V_n$ les suites définies par :

$$U_1 = 12$$
, $V_1 = 1$

$$U_{n+1} = \frac{U_n + 2V_n}{9}$$
 et $V_{n+1} = \frac{U_n + 3V_n}{4}$

- 1) Soit (W_n) est la suite définie par $W_n = V_n U_n$.
 - a) Montrer que (W_n) est geometrique puis exprimer W_n en fonction de n.

- b) Montrer que (W_n) est convergente puis calculer sa limite.
- 2) Démontrer que (U_n) est decroissante et (V_n) croissante .
- 3) Démontrer que $U_1 \ge U_n \ge V_n \ge V_1$
- 4) En déduire que (U_n) et (V_n) convergent vers la même limite l.
- 5) On pose $T_n=3U_n+8V_n$ Démontrer que T_n est constante puis déduire l.

Exercice 4: (bac G 2002)

On considère la suite (U_n) définie par

$$\begin{cases} U_0 = -2 \\ 3U_{n+1} + 2U_n = -\frac{5n+7}{(n+1)(n+2)} \end{cases}$$

- 1) Calculer U_1 , U_2 , U_3 .
- 2) Soit $W_n = U_n + \frac{1}{n+1}$. Montrer que (W_n) est une suite géométrique. Préciser sa raison et son premier terme. Vérifier que l'on a $W_3 = \frac{8}{27}$.
- 3) Exprimer (W_n) et (U_n) en fonction de n.
- 4) Démontrer que la suite (U_n) est convergente.

Exercice 5:

On considère la suite réelle U definie sur $\mathbb N$ par : $U_0 \in \mathbb N$ $U_{n+1} = \frac{u_n + a}{u_n + 1}$

Partie 1: Dans cette partie on prend $U_0 = 1$ et a = 0.

- 1) Montrer que pour tout réel $de \mathbb{N} U_n > 0$.
- 2) Soit (W_n) la suite definie pour tout $n \in \mathbb{N}$ $W_n = \frac{1}{U_n}$
 - a) Montrer W est une suite arithmétique dont on précisera le premier terme et la raison.
 - b) Exprimer alors U_n en fonction de n.

Partie 2 : Dans cette partie on prend $U_0=0$ et $a=\frac{1}{4}$.

- 1) Montrer que pour tout réel $de \mathbb{N}$ $0 \leq U_n < \frac{1}{2}$.
- 2) Etudier la monotonie de U.
- 3) Soit (V_n) la suite definie pour tout $n \in \mathbb{N}$ $V_n = \frac{2U_n + 1}{2U_n 1}$
 - a) Montrer V est une suite géométrique dont on précisera le premier terme et la raison.
 - b) Exprimer alors U_n en fonction de n.
 - c) Calculer $\lim_{n\to+\infty} U_n$.

Exercice 6:

On considère la suite réelle U definie sur $\mathbb N$ par : $\begin{cases} U_0 = 0 \\ U_{n+1} = \sqrt{4+3U_n} \end{cases}$

- 1) Montrer que pour tout réel $de \mathbb{N} \ 0 \leq U_n \leq 4$.
- 2) Etudier la monotonie de U.
- 3) Montrer que pour tout réel $de \mathbb{N} |U_{n+1} 4| \leq \frac{3}{4} |U_n 4|$.

- 4) En déduire que pour tout réel n de $\mathbb{N}: 4-4(\frac{3}{4})^n \leq U_n \leq 4$. Calculer alors $\lim_{n \to +\infty} U_n$.
- 5) Soit (S_n) la suite definie pour tout $n \in \mathbb{N}$ $S_n = \sum_{k=0}^n U_k$. Montrer que pour tout n de \mathbb{N}^* par : $V_n = n(3 U_n)$
 - a) Prouver que cette suite est géométrique
 - b) Exprimer V_n puis U_n en fonction de n.
 - c) Calculer $\lim_{n\to+\infty} V_n$ et $\lim_{n\to+\infty} U_n$.

Exercice 7:

- 1) Calciner la n^{ieme} terme U_n d'une suite géométrique de premier terme $U_1=4$ et de quatrieme terme $U_4=\frac{27}{16}$
- 2) Soit (U_n) une suite géométrique de premier terme $U_0=3$ et de raison -2. Calculer U_7 et la somme des 7 premiers termes. La suite (U_n) admet-elle une limite en $+\infty$.
- 3) Sot (V_n) une suite géométrique de raison >0 . On pose $S_n=V_0+V_1+V_2+\cdots+V_n$. Calculer q , U_0 et n sachant que $U_2=2$, $U_4=\frac{2}{9}$ et $S_n=24$.

Exercice 8:

- 1) Une suite géométrique réelle (U_n) de premier terme non nul noté U_0 , admet pour raison un nombre réel non nul noté q.
 - a) Quelles valeurs peut prendre q sachant que $4U_3=49U_5$. Dans la suite de cet exercice, q prend l'une ou l'autre des valeurs ainsi déterminées.
 - b) On note (S_n) la somme $\sum_{k=0}^n U_k = U_0 + U_1 + \cdots + U_n$. Calculer (S_n) en fonction de U_0 , q et n.
 - c) Préciser U_0 et q sachant que $\lim_{n\to+\infty} S_n = 5$ et $U_0 < 4$.
- 2) (U_n) désignant la suite déterminer au 1) a) , on définit la suite (V_n) par $V_n=7U_n-25$.
 - a) Exprimer V_n en fonction de n.
 - b) La suite (V_n) est-elle convergente ? Si oui calculer sa limite.

Exercice 9:

Soit la suite (U_n) définie par

$$\begin{cases} U_0 = 0; \ U_1 = 3 \\ U_{n+1} = \frac{4}{3}U_n - \frac{1}{3}U_{n-1}; \ n \ge 1 \end{cases}$$

- 1) On pose $V_n = U_{n+1} U_n$
 - a) Démontrer que (V_n) est une suite géométrique dont on précisera la raison et le premier terme.
 - b) Exprimer V_n en fonction de n.
- 2) On pose pour $n \ge 1$ $S_n = \sum_{k=0}^n V_k$
 - a) Exprimer S_n en fonction de n.
 - b) En déduire U_n en fonction de n.
 - c) Calculer $\lim_{n\to+\infty} S_n$.

Exercice 10:

Soit a un réel donné ; On considère (X_n) et (Y_n) 2 suites numeriques definie par :

$$\begin{cases} X_n = (a-1)Y_{n-1} \\ Y_n = -aX_{n-1} + (1-2a)Y_{n-1} \end{cases}$$

Soit (U_n) la suite numerique definie par $U_n=X_n+Y_n$ pour tout $n\in\mathbb{N}.$

1)

- a) Déterminer que (U_n) est une suite géométrique.
- b) Déterminer U_n en fonction de n et de a.
- 2) On considère dans cette question $0 < a < \frac{1}{2}$.
 - a) Démontrer par récurrence sur n que $\forall n \in \mathbb{N} \ X_n < 0 \ et \ Y_n > 0$?
 - b) La suite (U_n) est-elle convergente ? Si oui quelle est sa limite.
 - c) On considère la suite numérique (V_n) definie par $V_n=\frac{X_n}{Y_n}$ pour tout n de $\mathbb N$. Démontrer que $\forall \ n\in \mathbb N$ $V_{n+1}=\frac{a-1}{-aV_n+1-2a}$ En déduire la limite si elle existe de (V_n) .
 - d) On pose $a=\frac{1}{3}$. Vérifier que $\forall n\in\mathbb{N}$ $V_n=\frac{1+\frac{1}{2}(-\frac{1}{2})^n}{\frac{1}{4}(-\frac{1}{2})^n-1}$. En déduire limite de (V_n) .