

08 1 CGS 02 01 Durée : 05 heures Toutes séries réunies

SESSION 2008

CLASSES DE PREMIÈRE

MATHEMATIQUES

Les calculatrices électroniques <u>non imprimantes</u> avec entrées unique par clavier sont autorisées. Les calculatrices permettant d'afficher des formulaire ou des tracés de courbe sont interdites. Leur utilisation sera considérée comme une fraude. (Cf. Circulaire n° 5990/OB/DIR. du 12.08.1988).

Il sera tenu compte pour l'appréciation des copies de la présentation, de la clarté et de la précision de l'argumentation.

EXERCICE 1 (03 points)

Pour un ensemble A ayant un nombre fini d'éléments, le cardinal de A désigne le nombre d'éléments de A ; il est noté card(A).

Soit n un entier naturel supérieur ou égal à 3. N_n désigne l'ensemble des entiers naturels à n chiffres.

1. a- Calculer card (N_3) .

(0,5 point)

b- Combien d'éléments de $\,N_{\rm 3}\,$ ne contiennent pas de zéro ?

(0,25 point)

- c- En déduire que le nombre d'éléments de N_3 qui contiennent au moins un zéro est 171. (0,25 point)
- 2. $N_{n,1}$ désigne l'ensemble des éléments de N_n qui contiennent un seul zéro.
 - a- Calculer $card(N_{3,1})$ et $card(N_{4,1})$.

(0,5 point)

b- Calculer $card(N_{n,1})$.

(0,25 point)

3. $N_{n,2}$ désigne l'ensemble des éléments de N_n qui contiennent exactement deux zéros.

Démontrer que pour tout entier n supérieur ou égal à 3, on a :

card(N_{n,2}) =
$$\frac{(n-1)(n-2)}{2} \cdot 9^{n-2}$$
 (01,25 point)

EXERCICE 2

(05 points)

 $\left(0,i,j\right)$ est un repère orthonormal du plan **(P)**, k est un réel différent de 0 et 1.

Pour tout point M du plan **(P)**, on désigne par P_M et Q_M ses projetés orthogonaux respectifs sur l'axe des abscisses et l'axe des ordonnées.

On note T_k l'application du plan dans le plan qui, au point M, associe le point M' tel que M' soit le barycentre des points pondérés $\left(\mathsf{P}_\mathsf{M},\mathsf{k}\right)$ et $\left(\mathsf{Q}_\mathsf{M},\mathsf{1-k}\right)$.

1- On suppose : k = 2.

Soit (Δ) la droite d'équation y + 2x - 6 = 0 . (Δ) coupe l'axe des abscisses en I et l'axe des ordonnées en J.

a- Tracer (Δ) puis construire les points l' et J', images de l et J par $^{\mathsf{T}}_2$.

(0,25 point)

b- Montrer que pour tout point M de (Δ), I', J' et M' sont alignés. (0,5 point)

CLASSES DE PREMIERE

- 2- Soit *M* un point de coordonnées (x, y).

 Montrer que les coordonnées x' et y' de M' sont : x' = kx et y' = (1 k)y . (0,25 point)
- 3- Soit (\mathcal{P})la parabole d'équation y = x^2 et M un point de (\mathcal{P}) d'abscisse non nulle.
 - a- Existe-t-il des valeurs de k pour lesquelles M' appartient à (\mathcal{P})? (0,5 point)
 - b- Si oui, préciser pour chacune de ces valeurs la position de M'. (0,5 point)
- 4- Soit (C) le cercle de centre O et de rayon 3
 - a- Montrer qu'il existe une valeur unique de k pour laquelle l'image de
 - (C) par T_k est un cercle.

(0,75 point)

b- Quelle est la nature de T_k pour la valeur trouvée ?

(0,25 point)

5- On note A_0 le point de coordonnées (2,1) et on pose :

$$A_1 = T_k(A_0)$$
; $A_2 = T_k(A_1)$; ...; $A_n = T_k(A_{n-1})$ pour tout $n \ge 1$.

Soit (x_n, y_n) le couple de coordonnées de A_n .

a- Exprimer x_n et y_n en fonction de k et n.

(0,5 point)

b- Déterminer l'ensemble des réels k tels que les suites (x_n) et (y_n) soient convergentes. (0,25 point)

On pose : $\overrightarrow{OS_n} = \overrightarrow{OA_0} + \overrightarrow{OA_1} + ... + \overrightarrow{OA_n}$ et on suppose que $k \in]0,1[$

c- Calculer les coordonnées (X_n, Y_n) de $\overline{\mathrm{OS}_n}$.

(01 point)

d- Les suites (X_n) et (Y_n) sont-elles convergentes ?

(0,25 point)

EXERCICE 3 (06 points)

Pour tout polynôme P , on considère le polynôme ΔP , défini pour tout réel x par :

$$\Delta P(x) = P(x + 1) - P(x)$$

1/ Calculer $\Delta P(x)$ dans chacun des cas suivants :

a)
$$P(x) = 2x + 1$$

b)
$$P(x) = x^2 - 4x + 6$$

c)
$$P(x) = x^3$$

(03 x 0,25 point)

2/ Vérifier que si P et Q sont deux polynômes, λ et μ deux réels, alors :

$$\Delta(\lambda P + \mu Q) = \lambda \Delta P + \mu \Delta Q$$

(0,25 point)

3/ Montrer que si P est un polynôme de degré $n \pmod{1}$, alors, ΔP est un polynôme de degré n-1.

Montrer que la réciproque est vraie.

(0,5 point)

4/ On note P₀ et P₁ les polynômes respectivement définis par :

$$P_0(x) = 1$$
 et $P_1(x) = x - 1$

a) Vérifier que : $\Delta P_1 = P_0$

(0,25 point)

b) On admet qu'il existe un unique polynôme noté P_2 tel que : $P_2(1) = 0$ et $\Delta P_2 = P_1$ Déterminer $P_2(x)$. (On pourra calculer $P_2(2)$). (01 point)

CLASSES DE PREMIERE

Application: Soit n un entier naturel non nul

En écrivant l'égalité $\Delta P_2(k) = P_1(k)$ pour $k \in \{1, 2, ..., n+1\}$, montrer la formule suivante:

1+ 2+ ...+ n =
$$\frac{n(n+1)}{2}$$
. (01 point)

- 5) On pose $\Delta^2 P = \Delta(\Delta P)$
 - a) Montrer que pour tout polynôme P de degré 2, on a :

$$\forall \ X_{\in} \ IR, \ P(x) = P(1) + \Delta P(1) \bullet (x - 1) + \frac{\Delta^{2}P(1)}{2} \bullet (x - 1)(x - 2).$$
 (01 point)

b) Trouver alors un polynôme P de degré 2 tel que :

$$P(1) = -1$$
, $P(2) = 9$ et $P(3) = 21$. (0,5 point)

EXERCICE 4 (06 points)

- 1- Soit O un point du plan et R un réel positif.
 - (C) est le cercle de centre O et de rayon R.

Calculer, en fonction de R, les réels c_3 et c_4 , côtés respectifs d'un triangle équilatéral et d'un carré tous deux inscrits dans (C).

(01 point)

- 2- Soit un polygone régulier à n côtés inscrit dans (C) avec $n \ge 3$. On note c_n le côté de ce polygone. P et Q étant deux sommets consécutifs de ce polygone, soient H le pied de la hauteur issue de O du triangle OPQ et I le point de rencontre de la demi-droite [OH) avec (C). On pose OH = α_n et HI = β_n .
 - a- Démontrer les égalités suivantes :

$$(\alpha_n)^2 = R^2 - \frac{(c_n)^2}{4}$$
 et $(c_{2n})^2 = (\beta_n)^2 + \frac{(c_n)^2}{4}$ (0,75 point)

b- Calculer alors c₆, c₈ et c₁₂.

(0,75 point)

- 3- Application à la recherche d'une approximation de $(c_n)^2$
 - a- Dans un repère orthogonal, placer les points A_n de coordonnées $\left(n; \frac{R^2}{(c_n)^2}\right)$ pour les valeurs suivantes de n: 3;4;6;8.

b- a, b et c sont trois réels avec $a \neq 0$.

(0,5 point)

f est la fonction définie sur IR par $f(x) = ax^2 + bx + c$.

Trouver les valeurs de a,b et c pour que la courbe représentant f dans le repère précédent passe par les points A_3 , A_4 et A_6 . (0,75)point)

c- Montrer que f(8) est une valeur approchée de
$$\frac{R^2}{(c_8)^2}$$
 à 2.10^{-2} près. (0,5 point

d- Jordanus Nemoaius (-1237) a proposé, dans son livre « De triangulis », l'approximation suivante de $(c_n)^2$, connue sous le nom de « formule indienne » :

CLASSES DE PREMIERE

$$\forall \ n \geq 3, \ \frac{R^2}{\left(c_n\right)^2} \approx \frac{1}{36} \left(n^2 - n + 6\right) \quad \text{soit} \quad \left(c_n\right)^2 \approx \frac{36}{n(n-1)+6} R^2.$$

Utiliser ce résultat pour trouver une approximation de c_5 , c_7 et c_{11} . (0,25 point)

4- Application à la recherche d'une approximation de $\sin\left(\frac{\pi}{n}\right)$

a- Donner une mesure en radians de l'angle PÔI. (0,25 point)

b- En déduire : $\forall n \ge 3$, $\sin\left(\frac{\pi}{n}\right) \approx \frac{3}{\sqrt{n(n-1)+6}}$. (0,75 point)

c- Utiliser ce résultat pour trouver une approximation de $\sin\left(\frac{\pi}{3}\right)$, $\sin\left(\frac{\pi}{4}\right)$, $\sin\left(\frac{\pi}{5}\right)$ (0,5 point)