SCIENCE EN HERBE SCIENCE PHYSIQUE TS TD ACIDES FORTS-BASES FORTES-DOSAGE :

Exercice 1:

Les questions sont indépendantes

- 1. Quel est le pH d'un mélange obtenu en ajoutant 8,2 cm³ de solution décimolaire de soude à 20 cm³ d'une solution chlorhydrique de concentration 5.10-2 mol/L?
- 2. Quel volume d'une solution décimolaire d'hydroxyde de sodium doit-on ajouter à 100 cm³ d'une solution centimolaire d'acide chlorhydrique pour obtenir un mélange de pH = 11?

Exercice 2:

- 1. On prélève un volume v_a = 10 mL d'une solution A d'acide chlorhydrique et on dose avec une solution B contenant 3,2 g de soude par litre. On constate qu'il faut verser un volume v_b = 12,5 mL de solution basique pour obtenir l'équivalence. Calculer la concentration molaire C_a de la solution d'acide chlorhydrique.
- 2. Quelles sont les concentrations des espèces en solution si on mélange un volume $v_1 = 20$ mL de A et un volume $v_2 = 12,5$ mL de B?

Exercice 3:

On dose 20 cm³ d'une solution d'acide sulfurique H₂SO₄ à l'aide d'une solution centimolaire de soude, en présence de phénolphtaléine. Celle-ci change de teinte pour un volume de solution de soude égal à 16 cm³.

- 1. Quel est le changement de couleur observé et déterminer la concentration de la solution d'acide sulfurique ainsi dosée ?
- 2. Quel était son pH?
- 3. On fait évaporer la solution obtenue. Quels sont le nom, la formule et la masse du solide obtenu ?

Exercice 4:

On verse dans 200 cm³ d'une solution d'acide chlorhydrique une solution d'hydroxyde de sodium à 0,5 mol/L. On mesure le pH en fonction du volume v_B d'hydroxyde de sodium versé. Les résultats sont rassemblés dans le tableau suivant (toutes les mesures se font à 25°C).

v _B (cm³)	0	0,35	1,0	2,0	2,5	3,0	4,0	4,5		
рН	1,9	1,9	2,0	2,1	2,2	2,3	2,6	2,9		
$v_B(cm^3)$	4,9	5,0	5,1	5,5	6,0	8,0	10,0	12		
рН	3,6	5,1	10,3	11	11,3	11,6	11,8	11,9		

- **1.** Tracer sur une feuille de papier millimétré la courbe $pH = f(v_B)$.
- 2. Déterminer le point d'équivalence et en déduire la concentration de la solution chlorhydrique.
- 3. Que peut-on dire du pH de la solution obtenue à l'équivalence ? Justifier la réponse.
- **4.** Calculer les concentrations en mol. L^{-1} , des différentes espèces chimiques présentes dans la solution lorsque l'on a versé $v_B = 3 \text{ cm}^3$.

Exercice 5:

On peut lire sur l'étiquette d'une bouteille d'acide chlorhydrique les données suivantes :

« masse volumique : 1 190 kg.m⁻³; pourcentage en masse d'acide pur : 37 % ».

- 1. On extrait de cette bouteille un volume V = 3,23 mL de solution, qu'on complète à 400 mL avec de l'eau pure. Calculer la concentration C_A de la solution ainsi préparée.
- 2. Afin de vérifier ce titre, on dose par cet acide un volume $V_B = 200$ mL d'éthanolate de sodium de concentration $C_B = 3.10^{-3}$ mol.L⁻¹. Exceptionnellement, la solution à titrer est placée ici dans la burette. Pour chaque volume d'acide versé, on relève la valeur du pH et on obtient le tableau suivant :

V _A (mL)	0	1	2	3	4	4,5	5	5,2	5,4	5,6	5,8	6
рН	11,5	11,4	11,3	11,2	11,0	10,9	10,7	10,6	10,5	10,3	10,0	7

VA	(mL)	6,2	6,4	6,6	6,8	7	7,5	8	9	10	11	12	13
	рН	4,0	3,7	3,5	3,4	3,3	3,1	3,0	2,8	2,7	2,6	2,5	2,4

- a) Construire la courbe $pH = f(V_A)$.
- **b)** Déterminer le volume d'acide à l'équivalence ainsi que la concentration de la solution d'acide. Conclure.

- 3. On remplace l'acide chlorhydrique initial par un même volume d'acide nitrique, de même concentration. La courbe précédente est-elle modifiée ? Justifier la réponse.
- 4. Parmi les trois indicateurs colorés ci-dessous, quels sont ceux qui pourraient servir à un dosage colorimétrique. Comment repérerait-on l'équivalence?

Indicateur coloré	Zone de virage
hélianthine	(rouge) 3,1 - 4,4 (jaune)
bleu de bromothymol	(jaune) 6,0 - 7,6 (bleu)
thymolphtaléine	(incolore) 9,4 - 10,6 (bleu)

Exercice 6:

On se propose d'effectuer le dosage d'une solution d'acide sulfurique de concentration molaire volumique inconnue C_a et de volume V_a = 50 cm³ par une solution d'hydroxyde de sodium de concentration C_b également inconnue. On relève le pH du mélange pour différentes valeurs du volume V de solution basique versée. Les résultats obtenus sont consignés dans le tableau ci-dessous :

V (cm³)	5	10	25	35	45	50	60
рН	2,04	2,12	2,42	2,67	3,16	4,03	10,77
N (H ₃ O ⁺)							

- 1. Ecrire l'équation de la réaction et exprimer les concentrations molaires volumiques [Na]; [SO₁] et [H₃O] du mélange en fonction de C_a, C_b, V et V_a. On se limitera à la partie du dosage avant l'équivalence.
- 2. Définir l'équivalence acido-basique ; exprimer le volume à l'équivalence V_E en fonction de C_a, C_b et V_a. Déduire des résultats précédents la relation : $[H_3O^+]$ $(V_a + V) = C_b(V_E - V)$
- 3. On pose $n(H_3O^+)=[H_3O^+](Va+V)=10^{-pH}(V_a+V)$
- 3.1. Compléter le tableau ci-dessus et tracer la courbe N (H₃O⁺) = f(V). Echelle: abscisse: $5 \text{ cm}^3 \leftrightarrow 2 \text{ cm}$; ordonnée: 0,041 mole $\leftrightarrow 1 \text{ cm}$
- 3.2. Déterminer graphiquement la concentration C₁ de la solution d'hydroxyde de sodium utilisée et le volume à l'équivalence V_E.
- **3.3.** Calculer la concentration molaire volumique C_a de la solution sulfurique.

Exercice 7:

Masses molaires en g.mol⁻¹: Na: 23; O: 16; H: 1

Dans un laboratoire on dispose des produits suivants :

- une solution S d'hydroxyde de sodium de masse volumique $\rho = 1.2$ kg. L⁻¹ et de pourcentage massique d'hydroxyde de sodium pur 16,7 %.
- une solution d'acide sulfurique de concentration molaire volumique Ca.
- de l'eau distillée.
- 1. Montrer que la concentration molaire volumique, C₀ de la solution S d'hydroxyde de sodium peut s'écrire : $C_b = \frac{1}{40} \rho$. (étant exprimée en kg. L⁻¹).
- 2. On prélève 10 mL de ta solution S qu'on dilue pour obtenir une solution S' de concentration molaire volumique $C'_b = 0$, 1 mol. L^{-1} . Déterminer le volume. D'eau distillée nécessaire à la préparation de S'.
- 3. Afin de déterminer la concentration C_a de la solution d'acide sulfurique, on dose 10 mL de celle-ci par la solution diluée S' d'hydroxyde de sodium.
- **3.1.** Ecrire l'équation-bilan de la réaction.
- 3.2. A l'équivalence, le volume de la solution S' d'hydroxyde de sodium utilisé est de 20 mL.
- **3.2.1.** Définir l'équivalence acido-basique et évaluer, justification à l'appui, le pH du mélange à l'équivalence.
- **3.2.2.** Calculer la concentration C_a de la solution sulfurique.
- 3.2.3. Calculer les concentrations molaires volumiques des espèces chimiques présentes dans le mélange obtenu, à l'équivalence.

